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Abstract: We propose a GPU-accelerated implementation of frequency-domain synthetic aperture
focusing technique (SAFT) employing truncated regularized inverse k-space interpolation. Our
implementation achieves sub-1s reconstruction time for data sizes of up to 100 M voxels, providing
more than a tenfold decrease in reconstruction time as compared to CPU-based SAFT. We provide an
empirical model that can be used to predict the execution time of quasi-3D reconstruction for any
data size given the specifications of the computing system.

Keywords: optoacoustic imaging; Fourier-domain image reconstruction; GPU acceleration

1. Introduction

Raster-scan optoacoustic (OA) angiography is a hybrid technique allowing for the
imaging of blood vessels using focused ultrasonic detectors due to local, laser-generated
thermoelastic expansion of hemoglobin [1]. High optical absorption by hemoglobin near
the 532 nm laser wavelength, and wideband ~100 MHz ultrasound detectors provide
commercial OA microscopes (OAMs) [2,3] with the ability to perform volumetric optoa-
coustic angiography of a ~6 × 6 × 3 mm3 volume with mega-voxel resolution in several
minutes. Modern laboratory OAM prototypes equipped with higher-powered lasers and
faster-scanning electronics [4,5] provide giga-voxel images within the same scanning time.

To improve the lateral resolution of OAM angiography above or below the focal plane
(Figure 1), the acquired OAM datasets require processing by reconstruction algorithms
utilizing the synthetic aperture focusing technique (SAFT) [6]. Similar to other mechanical
scanning techniques (such as cross-sectional CT and MRI), OAM SAFT reconstruction
algorithms are typically not applied to full-3D datasets (XYZ), but to sequential 2D datasets
(XZ) called B-scans, which are obtained in the course of mechanical zig-zag scanning. While
XZ-reconstructions can often be done in parallel with B-scan acquisition, YZ-reconstructions
usually require prior compensation for motion artifacts [7] characteristic of most in vivo
subjects due to their respiration and heartbeat during the scanning.
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Figure 1. Raster-scan OAM angiography with simultaneous acquisition and SAFT reconstruction.

Although sequential 2D reconstruction is computationally less complex than its full-3D
counterparts [8], the 2D SAFT reconstruction algorithms performed in the time domain
(TD) may require relatively large numbers of computations, especially if performed using
standard central processing units (CPUs). For example, 2D realization of the SAFT-TD
reported in [9] and performed on a standard CPU could require more than one minute
even for mega-voxel datasets.

Significant reduction in the computation time was achieved by performing two-
dimensional SAFT reconstruction in the frequency domain (FD) [10–12]. The 2D fast Fourier
transform (FFT) simplifies the computational complexity by the factor
[NX × NZ]/log2[NX × NZ], thus providing the performance necessary for online recon-
struction of mega-voxel resolution at the speed of volume scanning. However, real-time
SAFT-FD processing of giga-voxel datasets still remained an unmet challenge.

This manuscript focuses on the comparison of algorithms for accelerated reconstruc-
tion of large volumes of OAM data using parallel computing [13]. Since most SAFT-FD
calculations are arithmetically simple and not co-dependent, they fit well with the archi-
tecture of modern graphics processing units (GPUs), which are optimized for parallel
computations. The algorithm implemented in this manuscript is described in [10].

2. Materials and Methods
2.1. GPU-FD Accelerated Reconstruction

The GPU-FD algorithm used in this study is based on the SAFT-FD algorithm de-
veloped in [10]. In summary, this algorithm relates the spatial frequencies (kX , kZ) of the
discrete Fourier transform of the to-be-reconstructed image to the spatial/time frequen-
cies (kX , kt) of the discrete Fourier transform of the B-scan. This is nearly a one-to-one
relation given that kt is a function of the modulus of (kX , kZ), which is the reason why
the computational complexity of SAFT-FD is dominated by the discrete FT. Due to the
discreteness of the frequency grids, however, crosstalk exists between different kt, and
interpolation is needed to invert this relation. In [10], complex-valued interpolation weights
were determined based on a regularized pseudo-inverse approach. Previous work [10] also
showed that the number of interpolation nodes (kX , kZ) per (kX , kZ) can be truncated to a
small value α (typically 5 to 10) without a significant change to image quality, and that this
is independent of the total grid sizes.

A simplified block diagram of the GPU-FD algorithm implemented in MATLAB is
shown in Figure 2. While the initialization of data-independent parameters is performed
on the CPU, processing of the data is performed as parallelized tasks on the GPU. The
data-independent parameters are: the definition of interpolation node indices, interpolation
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weights, and a filter matrix for combined processing of focal plane selection; compensation
of limited angle detection; and Hilbert transform.
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Figure 2. Block diagram of the GPU-FD algorithm. Represented in the center are pre-processed
matrices containing the reconstruction indices (with α denoting the number of interpolation nodes),
the complex interpolation weights used for interpolation and the filter matrix.

The implemented pipeline consists of the simplest arithmetic operations with the
exception of forward/inverse FFT 2D functions (Figure 2) [14]. The number of spatial
frequencies (kX , kZ) is chosen to be identical to the number of pixels NX × NZ. However,
in the case of using zero padding, the number of frequencies would be double the number
of pixels in both the X- and the Z-dimensions.

While the characteristics of the GPU-FD algorithm can be determined according to
certain classifications [15], the following advantages of the pipeline (Figure 2) should be
mentioned: First, GPU-FD realization has massive (>75%) data parallelism. Next, the
number of threads exceeds the number of spatial frequencies, and therefore the thread
count is relatively high. Further, the number of synchronizations used for one B-scan after
each arithmetic operation between the FFT 2D and the inverse FFT 2D is relatively small
(6 pcs). Finally, the implemented pipeline (Figure 2) does not have branch divergence.

The minimum memory required for implementation of the GPU-FD algorithm is:
2(α + 1)NX × NZ, where NZ ≥ 2∆Z/AR where NZ is the required number of points

in the A-scan defined by the ultrasound probing depth ∆Z and the axial resolution (AR) of
the OAM system (usually NZ ~ 200), and Nz ≥ 2∆X/LR is the required number of scanning
lines in B-scan defined by the scanning range ∆X and the lateral resolution (LR) of the
detector (usually NX > 200). For enhanced OA image quality, oversampling by a factor of
two, as dictated by the Nyquist sampling theorem, can often be replaced by a factor of five,
leading to NZ = 5∆Z/AR and NX = 5∆X/LR evaluations. For enhanced reconstruction
quality within the depth range ∆Z, it is also important that the acquisition range is wider
than ∆Z, so that the diagonals corresponding to the maximum receiving angles of the
detector are fully covered. However, for simplicity we will assume that the number of
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axial pixels NZ in the raw and the reconstruction volumes is the same throughout the
manuscript.

The computation time Texe of the GPU-FD reconstruction algorithm can be estimated
as:

Texe = T0 + NY × Trec (1)

where T0 is the execution time of the preliminary preparation of indices and coefficients,
Trec is the execution time of the 2D reconstruction per B-scan (Figure 2) and NY is the
number of B-scans.

The algorithmic complexity of both the preparation T0 and the reconstruction Trec stages
are dependent on the number of spatial frequencies in the X- and Z-dimensions. In the con-
sidered case (Figure 2) of minimally required spatial sampling periods (2π/NX , 2π/NZ, the
number of spatial frequencies is equal to the number of pixels in each B-scan O([NX × NZ]).
However, denser linear sampling in the Fourier domain quadratically increases the algo-
rithmic complexity. For example, a factor-of-two zero-padding quadruples the number of
spatial frequencies with respect to the original number of pixels.

The reconstruction stage primarily depends on the FFT execution, with a compu-
tational complexity of O(NX × NZ × log2[NX × NZ]). In the case of fully parallelized
execution of the algorithm [16], the execution time can be approximated as:

Texe = A·NX × NY × NZ
pGPU · fGPU

+ B·NX × NY × NZ
pGPU · fGPU

·log2(NX × NZ) + C· NX
pCPU · fCPU

(2)

where fGPU,CPU are the clock speeds; pGPU,CPU are the effective number of processing cores
(cores in the case of CPU; stream processors/CUDA cores in the case of GPU); and the
parameters A, B and C are scaling factors dependent on the algorithm implementation (and
independent of the computing system configuration and the data volume).

2.2. Experimental Data

A fiber-based version [17] of dark-field OAM [18] with LR = 50 µm was used to
perform a ∆X = ∆Y = 8 mm lateral OA scan of an experimental tumor CT-26 [19] with
δX = δY = 10 µm scanning steps at a laser wavelength of 532 nm. The superficial tu-
mor vasculature was aligned with a 6.7 ± 0.75 mm depth-of-field, a custom-made [20,21],
6.7 ± 0.75 mm depth-of-field, wideband 1–100 MHz spherical ultrasonic PVDF detector.
Each OA A-scan with 10.24 µs duration was converted to 2048 samples by a 16-bit Ra-
zor16 (GaGe, Lockport, IL, USA) digitizer at a sampling rate of 200 MHz. The acquired
XYZ-volume was then cropped above and below the focal plane within the 1 µs time
interval corresponding to a depth range of ~6.7 ± 0.75 mm. The initial size of the raw OA
dataset thus contained {NX × NY × NZ = 800× 800× 200 = 128 M} voxels. To evaluate
the voxel-count dependent characteristics of the GPU-FD algorithm, OAM angiograms
with a larger/smaller number of voxels were synthesized by resampling the original OAM
angiogram.

3. Results and Discussion

Figure 3 shows the maximum intensity projections (MIP) of a raw angiographic image
(128 M voxels) and the procedure of consecutive application of the GPU-FD algorithm
(Figure 2) in two perpendicular orientations, leading to quasi-3D reconstruction. While the
first reconstruction in the XZ-plane improves the resolution in the X-direction, the second
reconstruction in the YZ-plane also improves the resolution in the Y-direction, resulting
in the OA MIP angiogram representing the vascular tumor microenvironment down to
50-micron resolution in both the X- and Y-directions.
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Figure 3. Sequential implementation of GPU-FD algorithm in XZ/YZ planes.

Since the mouse was immobilized using gas anesthesia, and the thigh with the tumor
located on it was fixed against the OAM immersion chamber, the mouse respiratory
movements did not have a visible effect on the image quality in the Y-direction. In the
presence of motion artifacts, motion compensation algorithms [22] would have to be applied
between XZ- and YZ-reconstruction.

Figure 4 compares the execution times of the CPU-TD [9] and CPU-FD [11], and the
GPU-based counterpart of the latter. The numerical tests evaluating voxel-dependent exe-
cution time for different reconstruction algorithms were performed on different processing
units characterized by different clock speeds and different thread counts (Table 1).

In comparison to the CPU-FD reconstruction (blue circles in Figure 4), the decrease in
execution time for the GPU-FD algorithm (green circles in Figure 4) is more than one order
of magnitude over the whole range of considered OAM data volumes. While the largest
data volume (4.2G voxels) required ~7 h execution time for the CPU-TD algorithm and
~13 min for the CPU-FD algorithm, the accelerated GPU-FD algorithm obtained the same
reconstructed 3D-dataset in less than 40 s (Figure 4). A more recent GPU (Nvidia GeForce
RTX 3090) executed the GPU-FD algorithm for the standard 128M-voxel data volume in
less than a second.

The execution times measured for different data sets using three different GPUs are
plotted as solid curves in Figure 5. The dotted curves were fitted according to Equation (2),
thus providing empirical evaluation of constants A, B and C.
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Table 1. Execution times for 128M-voxel OAM data volume using different processing units.

Processing Unit Clock Speed Number of
Cores

Execution Time, s

CPU-TD CPU-FD GPU-FD

Nvidia GeForce RTX 3090 1.7 GHz 10,496 n/a n/a 0.8

Nvidia GTX 1070 1.7 GHz 1920 n/a n/a 1.2

Nvidia Quadro P2200 1.5 GHz 1280 n/a n/a 1.6

Intel Core i7 9700H 4.7 GHz 8 700 22 n/a
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The precise analytical prediction of the reconstruction time Ta( f , p, NX , NY, NZ) is
difficult due to the uncertainty in pe f f , which is an estimate of the effective number of
cores participating in the computation. This is necessary because a large number of cores
can only be used efficiently if the voxel count is comparatively large. While Formula (2)
remains applicable in the case of large datasets NX ×NZ � p, leading to all cores becoming
involved (pe f f /p = 1), in the case of relatively small datasets NX × NZ < p not every core
can be utilized (pe f f /p < 1), thus leading to lower GPU performance. The effective number
of cores pe f f is estimated to increase linearly with the voxel count up to a saturation point
pratio, where pe f f /p = 1. To take into account voxel-dependence of the pe f f /p ratio, the
initial model (2) can be expanded to the following, where pratio, the saturation point, is an
additional fitting parameter:

Texe = A·NX × NY × NZ
fGPU ·pe f f

+ B·NX × NY × NZ
fGPU ·pe f f

·log2(NX × NZ) + C· NX
fCPU ·pCPU

(3)

pe f f =

{
p, i f (NX × NZ)/p > pratio

(NX × NZ)/pratio, i f (NX × NZ)/p < pratio
(3a)

A = 2.3× 10−3, B = 1.1× 101, C = 5.4× 104, pratio = 7.8 (3b)

The expanded model as described in Formula (3) is thus capable of providing an
accurate estimation of the GPU-FD algorithm computation time for any dataset size based
on the technical specifications of a given computing system.

In comparison to the 3D-SAFT developed in [13], our quasi-3D implementation reaches
equal performance even for the relatively small data size the authors provided as an
example. This comparison is also true for a full-3D implementation of GPU-FD, due to the
independence of the FFT algorithm on the dimensionality of the data. It is important to
note, however, that our implementation does not employ the same level of optimization,
instead prioritizing ease of development and platform-independence over performance by
keeping the implementation purely as MATLAB code. Implementation as an OpenCL or
CUDA kernel instead, as was done in [13], is expected to yield a significant performance
advantage.

While this manuscript focuses solely on the application in optoacoustic microscopy,
the same algorithm for quasi-3D reconstruction can also be used for tomography. For 2D
tomography based on a linear detector array, the cyclic part of the pipeline (Figure 2) can
be directly applied to individual B-scans. Since the speed of operation in 2D mode can be
several orders of magnitude higher than in quasi-3D mode, 2D real-time reconstruction at
more than 100 Hz B-scan acquisition rates is feasible.

4. Conclusions

The proposed GPU-accelerated implementation of a frequency-domain, 2D synthetic
aperture focusing technique shows great promise in speeding up optoacoustic image
reconstruction in both 2D and 3D. The developed numerical methods reduce the time for
quasi-3D processing of giga-voxel optoacoustic data volumes to several seconds. To study
the applicability of the developed algorithm for solving certain practical problems, it is
advisable to use the empirical model proposed in this manuscript, which allows estimating
the expected reconstruction time depending on the volume of processed data and the
parameters of the computing system.
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