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Abstract

The technical and scientific advancements in adive and passive microwave remote ssnsing,
covering the frequency range from roughly 1 to 1000 GHz, open the potertial for guantitative
gdudies, modelling and simulations. This applies also to predpitation. First of all, ssIf-
consistert drop-size digribution fundions are reguired. For this purpose, the digdributions of
Laws-Parsong, Marshall-Palmer, Joss-Drizzle and Joss-Thunderstorm are analysed in view
of an analvic expression for the terminal fall velocty in verdically stagnant air. It is found that
all digtributions need a rain-rate and pressure-dependert nom alisstion to fulfil the rainrate
iregral eqguation. Secondly, Mie computations for extinction, absorption, scattering, back-
scattering and asymm etric scattering are made with the 4 nomalised distributions over the
frequency range from 1 to 1000 GHz, using the dielectric model of liguid water by Liebe &t.
al. (1991}, Charactergic differences between size digtributions are found. Finally, due to the
multiple dependencies of the microwave interaction with rain, it is conduded that tuned com-
putations are more appropriate than look-up tables. Applications of this work include the
design of new sensors and improved forsard models for remote sensing of rain rate, rain-
water contert, and also to diginguish between differert size digtributions and thus for
advancing physical doud and precipitation models.



Introduction

During the last two decades, the developmert of active and passive microwave remote
sensng achieved significant advancements. On the technical side they are based on im-
provements in stabity and accuracy of phase and amplitude measuremerts with radar,
radiometers and line-of-sight transmission links. On the modelling side, the radiative-transfer
and propagation theory advanced as well, e.g. inthe development ofthe atmospheric Micro-
wave Propagation Model (MP MY over the fregquency range from 1 to 1000 GHz by Lieke
(15981 to Liebe et al. {1993}, with futher adjustments by Rosenkranz (15998) and by collabo-
rative work in Europe, e.g. COST Adion 712 in microwave radiometry (Matzler, 2000}, and
effortsto develop software tools, such as ARTS (Blhler et al. 2002).

To take full advantage of these results in the obhservation of precipitation, it is necessary to
advance precipitation gtudiesto a similar level of accuracy. Such work will ke beneficial for
physical process gtudies of predpitation and for its parameterisation in numerical weather-
prediction and dimate models. Firgdly, we need im proved form ulations ofthe drop-size digri-
bution functions, including shape effeds and fall velocity. Inthis paper emphasis isput on the
size digtribution of effedive spherical drops, of their fall velocity and their interaction with
microwave racdiation interms of Mie Theory.

Az discussed by Pruppacher and Klett (1578), the evolution of rain-drop sizesis governed by
com plex processes, depending on parameters changing from the source region in douds to
the hottom of the atm osphere. Therefore, attempts to gquantifythe size distribution are m odly
empirical. Still taken as a standard are the pioneering measurements by Laws and Parsons
(1943) used to derve the digtribution fundion of Marshall and Palmer {(1948). The ingumert
of Laws and Parsons consiged of a laver of flour in which rain drops fell to fom dough pel-
lets, whose size was related to the droplet volume. The expernments and their analysis were
very tedious. Similar size distributions followed later from an automated instrument, the dis-
drometer, developed by Joss and Waldvogel (15967), leading to the Drizzle (JD) and the
Thundergtorm (JT) Distibutions of Joss et al. (15968) for extreme forms of rain. Exponertial
functions were applied to all these observations. Because the fundions are simple, their uss
has been attractive with a long tradition in rainTadar applications. However, it was pointed
out on occasions that the exponential fundions overestimate the size distribution at diame-
ters below1 to 2 mm, egpecially near the surface. This disadvantage was of minor concern
to investigators with radars at decimetre and certimetre wavelengths where the signal was
dominated by the larged drops. However, as the wavelength got shoter in radar and even
more in radiometer applications, a reassessment ofthe size distributions was more and more
reguired. This was the motivation of de Welf (2001) who found that the modified gamma dis-
tribution allows better fits to the Laws-Parsons (LP) data than the exponential function.
Another deficiency of the standard size distributions is that they are not properly nom alisad,
i.e. the rain rate computed with these functions does not agree with the rainrate variable.
Such functions are not self consigent. The problem was poirted out by Olsen et al. (1978)
and by de Wolf (2001 ) who proposed rainsate dependent modifications of the original distri-
bution functions. Here, the normalisation is reanalysed, using an improved function for the
fall velocity, and taking into accourt ts dependence on air pressure. Expressions are derived
for 4 major digribution fundions with normalisations accurate to 0.2% (assuming no emor in
fall velocity). See Annexe for & description ofthe MATLAB Funclions.

The new fundions are applied to the determination of microwave extindion, scattering and
absomtion by rain, using a recent software tool for Mie Computations in MATLAE Math
Works, 19592 developed by Matzler (20020, ). Until recently, tabular and graphical data, e.qg.
from Deirmendjian {1969}, or simplified formulas with tabulated coeficierts, e .g. by Olsen et
al. (1978) for the extinction coefficiert, have been in use. In view of the multiple dependen-
ces on physical parameters, such as fregquency, diameter, dielednc constant, temperature
and pressure, it is advartageous to use dired Mie computations tuned to the respective
gituations. Such computations are suficdertly fagt on modern computers. Furthermore,
numerical simulations can easly include model modifications, e.g. impurity effeds in the
dieledric model of water.



Curmrent rain drop-size distmbutions and their normalisation

Crop-size distribution

For a given rain rate R, the drop-size dignbution function MDA describes the differertial
numkber of drops of diameter D per unit volume and per differential diam eter range 0. The
numkber Ny of drops per unit volume and the volume fraction £ ofrain water in air are given
bythe moments in Dof MO ) of order zero and three, respe dively

k-] =

N, =1!'1‘w'{D,R]a'D; I = %J"D?M{E,RHD (1)
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The measured size digrbution of Laws and Parsons (1943 ) was represerted as a fraction &F

ofthe total rain-water volum e in a given diam eter range [ D, g+Jd 00
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where & was 0.25 mm. Assuming the fall velocity can be represented by a fundion of O,
gich as the terminal fall velocty V. in stagnant air, the downward ux density of the rain-
water volume is given by

R.(R.P) = ""E _{ﬂﬂwm,mﬂm, PydD (3)

Ry hasunits of velodty. For a nom alised distribution fundion, £ is egual to the rain rate &,
expressed asa velodty, mogly inmmh. Thus, for By=FR, Equation (3] is the rainsate integral
egquation; if equality does not exigd, the ratio

R
Normi R, F)= 4
iz used to transform ANYD,R) 1o the normalised digribution function N D R, P
N (DR P) = Norm( R, P)- N(D,R) )]

which fulfils the rainsate integral equation. Examples will be shown below.

Terminal fall velocity of raindrops
The guality of normalisation depends on the akilityto describe the effective fall velocity ofthe
raindrops. In the past, power-law expressions of the form, V=al" were favoured, as they

allowed to represent Ry by amoment in Dof N An exam ple isthe laminar Stokes velocity for
which £=2 (Sauvagecot, 19592). Unfortunately, the Stokes formula is limited to & very small
range of diam eters, typically =0 .04mm, and a more realigic representation of V. is given by

the following formula for a gandard air pressure of A=1013 hP a

0 D= 0.03mm
VD R = 1432300 = 0.03mm); 0.03mm < D = 0.6mm; (Dinmm) ()
9.65 = 10 3exp(=0.60);, I = (L6mm

The third expression, valid for D=0.6mm, is from Atlas et al. (1973) and has heen widely
used (Sauvageot, 19592). However, negative values are obtained for D=0.03mm. The second
expression is used to avoid this problem; it is a linear fit to measurements of Gunn and Kin-
zer (19497, allowing for a smooth transition to the expression of Atlas. The first expression in
57 avoids ne gative values of the sscond one. With decreasing air pressure, the terminal fall
velocity increases as shown in Figure 1. The variation can be modelled by (7)
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V.(D.P) = V,w,m-[%] . (A=1013hPa, Dinmm) 7)

where the exponent is dightly dependent on D). As an atemative, a congdant exponent of
about 0.35 can be used, espedally when concertrating on the range of D values relevant in
the size-digribution fundions.
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Empirical expressions for N(O R) and Ny(N R P
Empircal expressions considered here are ofthe form
N{D,R) = N, D exp(-AlY) (8

where Mg and A are functions of . For gandard pressure A, the parameters ofthe normal-

ized fundions are shown in Tahle 1, where Normi R, P is fitted by second-order polynomials
in X=4n(A), and Inisthe natural logarithm of &.

Table 1: Parameters of Equations (8) and (2) for normalised distributiors st standard pressure A LP
according to de Wolf (200173, Marshall and Palmer (MP), Joss- Drizzle (JDY and Joss- Thunde rstorm
(T from Joss et al. [1862).

Digtribution Ml Ry 1imm ™ Normd B B *=In( /), Rin AR a
Function ITm Timm
LP 198 10°R " Norm | 1.047-0.0436 x+0.00734 % |5.38R""™| 253
MP . 08010 Norm 0842-000915-x+0.0072- % |41 R | 0
JD 3.0010° Norm 11194-0 0367 x+00079.% | 57-R®™' | O
JT 01410 Norm 1.0545+0.0052 %+ 00124 % | 30R™ | O




With increasing alttude, the air pressure deaeases, and V. ingeases according to Equation
73 lgnering the weak D dependence in the exponent of the pressure ratio in (7], Equations
3land (4) allowus to expre 55 the pressure dependence of Morm by

nis

h’ﬂrH{R.P}-h'ﬂrﬂiRJ[,}-[FP] : (PinhPa, A,=1013hPa) (9)

a

where the exponert 0.35 is an effedive mean value, corresponding to the dominart drop
diam eters between 1 and 3 mm . Together with functions Nerm{ B 7)) of Takle 1, E guation (2)
is usad to transform the original size digributions (8) to the nom alised ones of E guation (3)
for any O, Pand R.
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Figure 2: Computed and fitted NormiR Fo) values versus Xx=In R of size distributions of LP
toplet), MP foprght), JO (hottom left) and JT (hottom right) for adapted ranges of B,

The fits to the adual MNorm values are displaved in Figure 2. The gandard devigtion ofthe fits
iz 0.002 or smaller. The normalisstion, keing a correction on the order of 20% for LP, MP and
JO, and up to 50% for JT, is & significant improvement of the original fundions to errors of
about 0.2%, assuming V.to be comect. The four rain-<digtribution functions are shown in the
semi-logarithmic plot of Figure 3 for A~Smm/h together with the distribution function of a
doud [Cumulus Congedus) with a liguid-weater contert of 0.8gim”™ (Ulaby et al . 1981). MP is
the exponertial (straight line) fit to LP whose slope is between the two Joss distibutions,
indicating the range of slopes from drizzle to thunderstorm. When comparing with the cloud
function, t appears that the total digribution of rain and doud must be closer to an exponen-
tial than to LP. Therefore the exponertial function may be a better choice for the effective






